Stopping Light All Optically
نویسندگان
چکیده
منابع مشابه
Stopping light all optically.
We show that light pulses can be stopped and stored coherently, with an all-optical adiabatic and reversible pulse bandwidth compression process. Such a process overcomes the fundamental bandwidth-delay constraint in optics and can generate arbitrarily small group velocities for any light pulse with a given bandwidth, without any coherent or resonant light-matter interactions. We exhibit this p...
متن کاملStopping and storing light coherently
We present a general analysis for the criteria to stop and store light coherently. We show that a light pulse can be stopped in any physical system, provided that (i) the system bandwidth can be compressed to zero; (ii) the system has sufficient degrees of freedom to accommodate the pulse, and the bandwidth compression occurs while the pulse is in the system; and (iii) the bandwidth compression...
متن کاملStopping light in a waveguide with an all-optical analog of electromagnetically induced transparency.
We introduce a new all-optical mechanism that can compress the bandwidth of light pulses to absolute zero, and bring them to a complete stop. The mechanism can be realized in a system consisting of a waveguide side coupled to tunable resonators, which generates a photonic band structure that represents a classical analogue of the electromagnetically induced transparency. The same system can als...
متن کاملAll-Optically Controlled Quantum Memory for Light with a Cavity-Optomechanical System
Optomechanics may be viewed as a light-mechanics interface to realize hybrid structures for (classical or quantum) information processing, switching or storage. Using the two-laser technique, in this paper, we theoretically devise a protocol for quantum light memory via a cavity optomechanical system composed of a Fabry–Perot cavity and a mechanical resonator. Due to the long-lived mechanical r...
متن کاملElectrically and Optically Readable Light Emitting Memories
Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2004
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.92.083901